Q1.Two points on a progressive wave are one-eighth of a wavelength apart. The distance between them is 0.5 m , and the frequency of the oscillation is 10 Hz . What is the minimum speed of the wave?

(Total 1 mark)

Q2. Which of the following waves cannot be polarised?

A radio

B ultrasonic \square

C microwave

D ultraviolet $\quad \bigcirc$
(Total 1 mark)

Q3. Which of the following is correct for a stationary wave?

A Between two nodes the amplitude of the wave is constant.

B The two waves producing the stationary wave must always be 180° out of phase.

C The separation of the nodes for the second harmonic is double the separation of nodes for the first harmonic.

D Between two nodes all parts of the wave vibrate in phase.

Q4. Sound waves cross a boundary between two media X and Y. The frequency of the waves in X is 400 Hz . The speed of the waves in X is $330 \mathrm{~m} \mathrm{~s}^{-1}$ and the speed of the waves in Y is $1320 \mathrm{~m} \mathrm{~s}^{-1}$. What are the correct frequency and wavelength in Y ?

	Frequency / Hz	Wavelength / m	
A	100	0.82	\square
B	400	0.82	\square
C	400	3.3	\square
D	1600	3.3	\square

Q5.The diagram shows two pulses on a string travelling towards each other.

Which of the following diagrams shows the shape of the string when the pulses have passed through each other?

A

C

D

Q6. Which one of the following provides direct experimental evidence that light is a transverse wave motion rather than a longitudinal wave motion?

A Two light waves that are coherent can be made to interfere.

B Light can be diffracted.

C Light can be polarised.

D The intensity of light from a point source falls off inversely as the square of the distance from the source.
(Total 1 mark)

Q7.The sound quality of a portable radio is improved by adjusting the orientation of the aerial.
Which statement is a correct explanation of this improvement?
A The radio waves from the transmitter are polarised.
B The radio waves from the transmitter are unpolarised.
C The radio waves become polarised as a result of adjusting the aerial.
D The radio waves become unpolarised as a result of adjusting the aerial.

Q8.A microwave transmitter is used to direct microwaves of wavelength 30 mm along a line XY . A metal plate is positioned at right angles to XY with its mid-point on the line, as shown.

When a detector is moved gradually along XY , its reading alternates between maxima and minima. Which one of the following statements is not correct?

A The distance between two minima could be 15 mm .
B The distance between two maxima could be 30 mm .
C The distance between a minimum and a maximum could be 30 mm .
D The distance between a minimum and a maximum could be 37.5 mm .

Q9.By approximately how many times is the wavelength of audible sound waves greater than the wavelength of light waves?

A $\quad 10^{2}$
B 10^{6}
C $\quad 10^{10}$
D $\quad 10^{14}$

Q10.A stationary wave is formed by two identical waves of frequency 300 Hz travelling in opposite directions along the same line. If the distance between adjacent nodes is 0.60 m , what is the speed of each wave?

A $\quad 180 \mathrm{~m} \mathrm{~s}^{-1}$

B $\quad 250 \mathrm{~m} \mathrm{~s}^{-1+}$

C $\quad 360 \mathrm{~m} \mathrm{~s}^{-1}$

D $\quad 500 \mathrm{~m} \mathrm{~s}^{-1}$
(Total 1 mark)

Q11.The diagram shows a snapshot of a wave on a rope travelling from left to right.

At the instant shown, point \mathbf{P} is at maximum displacement and point \mathbf{Q} is at zero displacement. Which one of the following lines, \mathbf{A} to \mathbf{D}, in the table correctly describes the motion of \mathbf{P} and \mathbf{Q} in the next half-cycle?

	\mathbf{P}	\mathbf{Q}
A	falls then rises	rises
B	falls then rises	rises then falls
C	falls	falls
D	falls	rises then falls

Q12.The speed of sound in water is $1500 \mathrm{~m} \mathrm{~s}^{-1}$. For a sound wave in water having frequency 2500 Hz , what is the minimum distance between two points at which the vibrations are $\frac{\pi}{3}$ rad out of phase?

A $\quad 0.05 \mathrm{~m}$
B $\quad 0.10 \mathrm{~m}$
C $\quad 0.15 \mathrm{~m}$
D $\quad 0.20 \mathrm{~m}$
(Total 1 mark)

Q13. Which one of the following properties of light waves do polarising sunglasses depend on for their action?

Light waves may
A interfere constructively.
B interfere destructively.
C be polarised when reflected from a surface.
D be polarised by the lens in the eye.

Q14. Which line, \mathbf{A} to \mathbf{D}, in the table shows correct relationships for the respective wavelengths, $\lambda_{\mathrm{L}}, \lambda_{\mathrm{s}}$, and frequencies, f_{1}, f_{s}, of light waves and sound waves?

	wavelengths	frequencies
A	$\lambda_{\llcorner } \ll \lambda_{\mathrm{s}}$	$f_{\llcorner } \gg f_{\mathrm{s}}$
B	$\lambda_{\llcorner } \ll \lambda_{\mathrm{s}}$	$f_{\llcorner } \ll f_{\mathrm{s}}$
C	$\lambda_{\llcorner } \gg \lambda_{\mathrm{s}}$	$f_{\llcorner } \gg f_{\mathrm{s}}$
D	$\lambda_{\llcorner } \gg \lambda_{\mathrm{s}}$	$f_{\llcorner } \ll f_{\mathrm{s}}$

(Total 1 mark)

Q15.Two points on a progressive wave differ in phase by $\frac{\pi}{4}$. The distance between them is 0.5 m , and the frequency of the oscillation is 10 Hz . What is the minimum speed of the wave?

A $\quad 0.2 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 10 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 20 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 40 \mathrm{~m} \mathrm{~s}^{-1}$
(Total 1 mark)

Q16. Which line, \mathbf{A} to \mathbf{D}, in the table gives a correct difference between a progressive wave and a stationary wave?

	progressive wave	stationary wave
A	all the particles vibrate	some of the particles do not vibrate
B	none of the particles vibrate with the same amplitude	all the particles vibrate with the same amplitude
C	all the particles vibrate in phase with each other	none of the particles vibrate in phase with each other
D	some of the particles do not vibrate	all the particles vibrate in phase with each other

(Total 1 mark)

Q17.Stationary waves are set up on a length of rope fixed at both ends. Which one of the following statements is true?

A Between adjacent nodes, particles of the rope vibrate in phase with each other.
B The mid point of the rope is always stationary.

C Nodes need not necessarily be present at each end of the rope.
D Particles of the rope at adjacent antinodes always move in the same direction.
(Total 1 mark)

Q18.A wave of frequency 5 Hz travels at $8 \mathrm{~km} \mathrm{~s}^{-1}$ through a medium. What is the phase difference, in radians, between two points 2 km apart?

A0
B $\frac{\pi}{2}$
$\mathrm{C} \pi$
D $\frac{3 \pi}{2}$
(Total 1 mark)

Q19.A source emits light of wavelength 600 nm as a train of waves lasting $0.01 \mu \mathrm{~s}$. How many complete waves are sent out?
speed of light $=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
A 5×10^{6}
B 18×10^{7}
C 5×10^{9}
D 5×10^{22}
(Total 1 mark)

Q20.

The graph shows, at a particular instant, the variation of the displacement of the particles in a transverse progressive water wave, of wavelength 4 cm , travelling from left to right. Which one of the following statements is not true?

A The distance PS = 3 cm .

B \quad The particle velocity at Q is a maximum.

C The particle at S is moving downwards

D Particles at P and R are in phase.

Q21.The audible range of a girl's hearing is 30 Hz to 16500 Hz . If the speed of sound in air is $330 \mathrm{~m} \mathrm{~s}^{-1}$, what is the shortest wavelength of sound in air which the girl can hear?

A $\quad \frac{30}{330} \mathrm{~m}$
B $\frac{16500}{330} \mathrm{~m}$
C $\quad \frac{330}{16500} \mathrm{~m}$

D $\quad \frac{330}{30} \mathrm{~m}$
(Total 1 mark)

Q22. Which one of the following types of wave cannot be polarised?
A radio

B ultraviolet

C microwave

D ultrasonic
(Total 1 mark)

Q23.A uniform wire fixed at both ends is vibrating in its fundamental mode. Which one of the following statements is not correct for all the vibrating particles?

A They vibrate in phase.
B They vibrate with the same amplitude.
C They vibrate with the same frequency.
D They vibrate at right angles to the wire.
(Total 1 mark)

Q24.A wave motion has period T, frequency f, wavelength λ and speed v. Which one of the following equations is incorrect?

A $1=T f$
B $T=\frac{v}{\lambda}$
C $\lambda=\frac{v}{f}$

D $\quad T v=\lambda$

Q25.

The diagram above shows a stationary wave on a stretched string at a time $t=0$. Which one of the diagrams, \mathbf{A} to \mathbf{D}, correctly shows the position of the string at a time $t=0.010 \mathrm{~s}$?
A

B

C

D

Q26.A progressive wave in a stretched string has a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ and a frequency of 100 Hz . What is the phase difference between two points 25 mm apart?

A zero
B $\quad \frac{\pi}{4} \mathrm{rad}$
C $\frac{\pi}{2} \mathrm{rad}$

D $\quad \pi \mathrm{rad}$
(Total 1 mark)

Q27. Which one of the following statements about stationary waves is true?
A Particles between adjacent nodes all have the same amplitude.
B Particles between adjacent nodes are out of phase with each other.

C Particles immediately on either side of a node are moving in opposite directions.

D There is a minimum disturbance of the medium at an antinode.
(Total 1 mark)

Q28. Which one of the following types of wave cannot be polarised?
A radio
B ultrasonic

C microwave

D ultraviolet

Q29.The least distance between two points of a progressive transverse wave which have a phase difference of $\frac{\pi}{3}$ rad is 0.050 m . If the frequency of the wave is 500 Hz , what is the speed of the wave?

A $\quad 25 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 75 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 150 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 1666 \mathrm{~m} \mathrm{~s}^{-1}$
(Total 1 mark)

Q30. Which one of the following statements about stationary waves is true?
A Particles between adjacent nodes all have the same amplitude.
B Particles between adjacent nodes are out of phase with each other.
C Particles immediately on either side of a node are moving in opposite directions.
D There is minimum disturbance of the medium at an antinode.
(Total 1 mark)

Q31.Two waves with amplitudes a and $3 a$ interfere.
amplitude at an interference maximum
The ratio
amplitude at an interference minimum is
A 2
B 3

C 4
D infinity

